Автоматизация Сварочных Процессов Реферат

Автоматизация Сварочных Процессов Реферат.rar
Закачек 1307
Средняя скорость 5156 Kb/s
Скачать

Автоматизация Сварочных Процессов Реферат

Механизм саморегулирования дуги с плавящимся электродом. Управление скоростью вращения электроприводов. Принцип действия и устройство автоматов с постоянной скоростью подачи электрода. Преимущества и недостатки универсального сварочного автомата АДФГ-630.

Подобные документы

Классификация исполнительных механизмов. Устройство и принцип работы пневматических, гидравлических, многопоршневых, шестеренчатых исполнительных механизмов. Электрические исполнительные механизмы с постоянной и регулируемой скоростью, их особенности.

Технологический процесс сварки плавящимся электродом в защитных газах. Расчет установки на основе автоматизации системы электропривода. Математическая и имитационная модели объекта управления в оболочке MatLab, анализ графиков переходных процессов.

Состав и свойства стали. Сведения о ее свариваемости. Технология получения сварного соединения внахлёст двух листов сваркой ручной дуговой и в среде защитных газов плавящимся электродом. Выбор сварочных материалов и источников питания сварочной дуги.

Механизация и автоматизация самих сварочных процессов. Подготовка конструкции к сварке. Выбор сварочных материалов и сварочного оборудования. Определение режимов сварки и расхода сварочных материалов. Дефекты сварных швов и методы контроля качества.

Сущность, основные достоинства и недостатки ручной дуговой сварки покрытыми электродами. Сущность, достоинства и недостатки сварки в среде защитных газов плавящимся электродом. Выбор сварочных материалов. Сварочно-технологические свойства электродов.

Сварка вольфрамовым электродом и использование в качестве защитных инертных газов или их смесей и постоянного или переменного тока. Влияние формы заточки электрода на форму и размеры шва. Зависимость технологических свойств дуги от рода, полярности тока.

Автоматизация процесса сварки. Анализ условий автоматизаций и возмущающих воздействий при сварке. Характеристики объектов регулирования при разных способах сварки. Системы ориентации электрода по стыку при аргонодуговой сварке криволинейных поверхностей.

Выбор схемы выпрямления, основные параметры выпрямителя. Катушка трансформатора с первичной и вторичной обмотками из изолированного провода. Значения тока тиристора в зависимости от номинального выпрямленного тока. Расчёт КПД сварочного выпрямителя.

Исследование процесса сварки вольфрамовым электродом в аргоне с присадочной проволокой титанового сплава ОТ4 применительно к проблеме повышения качества формирования швов при сварке с повышенной скоростью. Механические свойства сварных соединений.

Устройство, виды и принцип действия различных сварочных трансформаторов. Устройство однофазных сварочных трансформаторов для ручной сварки. Трансформаторы для автоматизированной сварки под флюсом. Сварочные генераторы переменного тока повышенной частоты.

Сварка — современный прогрессивный метод создания неразъемных соединений из металлов, сплавов и различных полимерных материалов.

Современное сварочное оборудование имеет высокую производительность. Сварка токами высокой частоты обеспечивает формирование швов при изготовлении труб со скоростью 50м/мин. Скорость двух- и трехдуговой сварки под флюсом достигает 4-5 м/мин. Точечные машины для контактной сварки обеспечивают производительность сварки до 350 точек в минуту.

Подлинный прогресс в развитии сварочного производства определяют механизация и автоматизация процесса сварки, особенно при комплексном подходе к задаче, т.е. если ее решение будет затрагивать все этапы сварочного производства — заготовительные, транспортные, загрузочные, сварочные, сборочные и отделочные операции. При механизации и автоматизации сварочного производства можно повысить производительность труда, качество продукции, сократить численность обслуживающего персонала. Труд рабочего в этих условиях становится более содержательным и творческим.

Механизация – это замена мускульных усилий человека усилиями механизмов, при этом за человеком остаются функции контроля и управления.

В зависимости от степени механизации процесса рабочий частично или полностью освобождается лишь от выполнения мускульных усилий. Однако за ним полностью сохраняются функции контроля и управления.

Автоматизация – это высшая степень механизации, когда человек освобождается не только от мускульных усилий, но и от оперативного контроля и управления за технологическими процессами производства.

Автоматизация процесса сварки — это перевод сварочного оборудования на автоматический режим работы, внедрение в производство технических устройств, действующих полностью без участия человека.

Если человек полностью выводится из процесса производства, то такой процесс называется автоматическим

Если человек частично выводится из процесса производства (остаются функции контроля), то такой процесс называется автоматизированным.

Пример частичной автоматизации в сварке — это процесс дуговой сварки с использованием сварочных аппаратов с постоянной и управляемой (принудительной) скоростью подачи электродной проволоки. В данном случае механизированы подача электродной проволоки, перемещение электрода вдоль линии свариваемого стыка, подача флюса (защитного газа); автоматизирован процесс управления напряжения дуги (изменением по заданному закону скорости подачи электродной проволоки при отклонении напряжения дуги от номинального значения).

Оснащение сварочного аппарата следящей системой за сварочным стыком и средствами контроля параметров режима сварки позволяет перейти к стадии полной автоматизации производственного процесса, когда сварку можно выполнять без участия человека. За оператором-сварщиком остаются лишь функции предварительной настройки процесса сварки, включения оборудования и наблюдения за ходом процесса сварки.

Все автоматические устройства, действующие без непосредственного участия человека, можно разделить на два класса: сварочные автоматы (или полуавтоматы) и автоматические системы ), см. рисунок.

У автоматов периодическая загрузка изделия, смена инструмента, контроль процесса сварки, переналадка оборудования выполняются по ходу работы автоматически; останов работы автомата требуется только для его настройки. У полуавтоматов для повторения процесса сварки, установки заготовки, снятия готового изделия, пуска требуется вмешательство человека.

Автоматические системы поддерживают неизменными или изменяют по заданному закону управляемые величины технологического процесса сварки без участия оператора- сварщика, осуществляют контроль их значений и обеспечивают безаварийную работу сварочного оборудования.

Автоматические системы можно разделить на 3 большие группы:

1. Системы автоматического управления –реализуют интеллектуальную составляющую сварочного оборудования, автоматически поддерживая в процессе сварки заданные значения управляемой величины.

2. Системы автоматического контроля –решают задачи измерения, регистрации и сигнализации о значениях физических показателей (параметров) режимов сварки.

3. Системы автоматической защиты от аварийных ситуаций –системы непосредственной защиты и блокировки сварочного оборудования от разрушитель сварочном производстве различают три фазы контроля: ис­ходных материалов перед сваркой, параметров в процессе сварки и качества сварных соединений.

Системы, составляющие 2 и 3 группы, относят к системам автоматики.

Системы автоматического контроля делят на три вида: измерения, сигнализации и регистрации.

Системы автоматического измерения контролируют параметры объекта, процесса и выдают результаты в абсолютных значениях во всем диапазоне изменения. Например, при дуговой сварке контролируют силу тока и напряжение дуги, скорость сварки, при контактной сварке — силу тока, усилие сжатия электродов, вре­мя сварки и т.д. Измерительным устройством (индикатором) обыч­но служит стрелочный или цифровой прибор. При контактной сварке используют также специальные приборы типа АСТ, АСД, СМ для измерения силы среднего и действующего тока, амплиту­ды и длительности протекания тока.

Для контроля качества сварных соединений неразрушающими методами применяют такие устройства контроля, как установки рентгеновского контроля РУП-120-5, «Лилипут», «Медикор» и др.; гамма-дефектоскопы типов УЗД и ДУГ.

Системы автоматической сигнализации применяют, когда тре­буется определять не конкретный параметр процесса, а лишь по­лучать информацию о том, изменяется ли он в допустимых преде­лах. О достижении граничного значения такая система оповещает световым или звуковым сигналом.

Системы сигнализации используют также при необходимости установить факт существования или достижения контролируемым объектом определенного состояния. В машине МШРП-1-3 для ро­ликовой сварки пластмассовых деталей система сигнализации, состоящая из гидравлического реле и сигнальной лампы, служит для контроля наличия воды в канале охлаждения электрода. В вы­сокочастотной установке ЛД1-2 для сварки пластмасс световая сигнализация дает знать сварщику, что подготовка генератора (пер­вичный прогрев) закончилась и можно начинать сварку.

Системы автоматической регистрации контролируемых пара­метров состоят из соответствующих датчиков и самопишущих и печатающих приборов или осциллографов, записывающих изме­нения параметров объекта на каком-либо носителе, чаще всего на бумажной ленте (например, прибор ИСТ-4АМ (разработан в ИЭС им. Е. О. Патона) для измерения и регистрации амплитудных значений силы тока при контактной сварке; приборы с потенциометрическими и индуктивными датчиками для регистрации уси­лия сжатия свариваемых деталей).

Примером применения комплексной системы автоматическо­го контроля в сварочном производстве является прибор УВС, со­стоящий из магнитоупругого датчика, усилителя, индикатора и отключающего устройства. Прибор позволяет контролировать про­должительность сварочного импульса и прекращать подачу сва­рочного тока, как только прочность сварного соединения дости­гает максимального значения.

В сварочном производстве различают три фазы контроля: ис­ходных материалов перед сваркой, параметров в процессе сварки и качества сварных соединений.

Cистемы автоматической защиты от аварийных ситуациях можно разделить на 2 класса: системы непосредственной защиты и автоматической блокировки:

1) системы непосредственной защиты: плавкие предохранители разнообразных конструкций, электрические защитные автоматы, автоматы повторного включения. Принцип действия основан на срабатывании (разрыве защищаемой токоведущей электрической цепи) при достижении сварочным током критических значений.

2)системы автоматической блокировки решают 2 задачи: защита оборудования от неправильного действия обслуживающего персонала (обеспечение заданной последовательности действий оборудования и включение резервного оборудования при выходе из строя основного.

В последние годы применяют промышленные сварочные роботы — автоматы, характеризующиеся гибкой кинетической схемой, разнообразием выполняемых операций, программной переналадкой на сварку изделий широкой номенклатуры. Это универсальные автоматические манипуляторы с программным управлением, предназначенные для воспроизведения управляющих и двигательных функций человека, обладающие способностью к адаптации.

Автоматизированное и механизированное оборудование часто объединяют в группы. Одна из них автоматическая линия — это производственный участок, специализированный на выполнении одной или нескольких однотипных сварочных операций . Автоматическая линия состоит из группы сварочных автоматов, объединенных общей системой управления и общими транс­портными устройствами с единым темпом работы.

Высокое качество работы сварочного оборудования напрямую связано с последними достижениями в области радиоэлектроники, электротехники, оптики, автоматики, микропроцессорной и вычислительной техники.

Известно сотни способов сварки и их разновидностей. В одних случаях уже применены адаптивные системы (например, в дуговой, контактной сварке), в других — использована только механизация процесса, в третьих — сварка осуществляется полностью вручную.

Открытие в 1942 г. В. И. Дятловым явления саморегулирования дуги позволило создать и широко использовать простые и надежные сварочные установки с постоянной скоростью подачи электродной проволоки. Дальнейшим развитием такого оборудования занимались Б.Е.Патон, В.К.Лебедев, Г.М.Каспржак, И.Я.Рабинович.

С 1950 г. создатели сварочного оборудования широко используют методы теории автоматического управления и вычислительную технику. Начался период более полной автоматизации сварочных процессов, а затем и сборочно-сварочного производства (работы Б. Е. Патона, К. К. Хренова и других исследователей по изучению свойств различных систем автоматического управления дуговой сварки и сварки под флюсом).

Большое влияние на развитие и широкое применение при расчетах статических и динамических характеристик сварочных процессов методами теории автоматического управления, на проектирование автоматического сварочного оборудования оказали работы ученых: Б.Е. Патона, Ф.А.Аксельрода, Б.Д.Орлова, А.С.Гельмана, В.К.Лебедева, П.Л.Чулошникова, Н.В.Подолы, Ю.А.Паченцева, Д. С. Балковец — в области контактной сварки; Б.Е. Патона, В. К.Лебедева, А. И.Чвертко, Н.С.Львова, Э.М.Эсибяна, В. В. Смирнова и др. — в области электродуговой, шлаковой сварки и наплавки; Ю.Н.Ланкина, В.М.Язовских, В.Я.Беленького, В.В.Башенко, В. Н.Ластовиря, О. К. Назаренко, В. А. Виноградова, В. А. Казакова, В.А.Лаптенка и др. — в области электронно­лучевой сварки; Б. Е. Патона, Г.А.Спыну, В.А.Тимченко, Ф.А.Киселевского — в области роботизации дуговой и контактной сварки. В 1970 —80-е гг. начались работы по оснащению сварочного оборудования следящими системами с электромагнитными и оптическими датчиками для автоматической ориентации электрода по линии стыка. Внедрению этого оборудования в производство способствовали работы Ю.А. Паченцева, Н.С.Львова, Р.М.Широковского, Ш.А.Вайнера, Ф.Л.Киселевского, В.В.Смирнова и других ученых.

В середине 1980-х гг. М.Л.Лифшицем, Д.Д.Никифоровым и другими учеными были разработаны телевизионные системы для автоматической коррекции положения сварочной ванны относительно свариваемого стыка при электронно-лучевой сварке.

В настоящее время серийный выпуск автоматизированного сварочного оборудования, инверторных источников питания с микропроцессорами в контуре управления налажен в зарубежных фирмах Lincoln Electric и Miller (США), Kllos и Killberg (Германия), ЕSАВ (Швеция), КЕМРРI (Финляндия), FRONIUS (Авст­рия) и др. Микропроцессорную технику можно отнести к сварочному оборудованию нового поколения, характеризуемому большим быстродействием, многофункциональностью в решении технологических задач, гибкостью перестройки и выбора рабочих программ, удобством в регулировке и визуализации параметров режима сварки, малыми габаритами и высокой надежностью в работе.

Автоматизация сварочного оборудования прежде всего предполагает оснащение этого оборудования системами автоматического управления. Они представляют собой наиболее сложный и в то же время самый распространённый вид автоматических систем, изучению которых и посвящена настоящая дисциплина.

Детальная информация о работе

Выдержка из работы

Автоматика и автоматизация сварочных процессов

сварочный автомат электрод

Большое значение в развитии сварки в машиностроении имела разработка способов автоматической сварки. Современное оборудование для сварки позволяет программировать режимы сварки.

Во второй половине ХХ в. произошел переход от машинно-технической революции к научно-технической, которая характеризуется широким использованием наукоемких технологий. В начале третьего тысячелетия сварка является одним из ведущих технологических процессов.

Автоматической системой (системой автоматического управления, или системой автоматического регулирования) называют совокупность управляемого объекта и управляющего устройства, взаимодействующих между собой в соответствии с законом (алгоритмом) управления. Задаваемое на входе требуемое значение регулируемой величины называется задающим воздействием системы.

Решение задач автоматики следует начинать с детального изучения управляемого объекта или объекта регулирования. Режим работы, состояние объекта характеризуются совокупностью физических показателей (параметров) и определяются текущими внутренними процессами, на характер которых влияют внешние воздействия.

1. Саморегулирование дуги с плавящимся электродом

Особенностью электрических дуг при сварке плавящимся электродом является присущее им свойство самовыравнивания энергетического состояния в условиях возмущающих воздействий. Это явление называется саморегулированием дуги (АРДС). Его использование позволило создать автоматы для дуговой сварки с постоянной скоростью подачи электродной проволоки без применения специальных регуляторов.

На рисунке 1 приведены ВАХ источника питания 1 и статическая характеристика дуги 2, равенство токов и напряжений имеет место в двух точках — А1 и А2.

Рисунок 1 — Внешняя характеристика источника питания (1) и вольтамперная характеристика дуги (2)

Для устойчивого горения дуги вольтамперная характеристика источника питания должна быть более крутопадающей, чем вольтамперная характеристика дуги.

2. Управление скоростью вращения электроприводов

В механизмах подачи электродной проволоки в сварочных полуавтоматах и автоматах и механизмах перемещений автоматов преимущественно применяются электродвигатели постоянного тока. Управлять скоростью двигателя можно тремя способами: изменением подводимого напряжения, потока, сопротивлением цепи якоря. Включение дополнительного сопротивления в цепь якоря приводит к получению падающей механической характеристики привода (с ростом нагрузки на валу скорость вращения двигателя падает), что неприемлемо в сварочных установках. Управление скоростью изменением величины магнитного потока также в сварочных установках практически не применяется, т. к. в этом случае скорость регулируется от номинальной и выше. В автоматах и полуавтоматах электроприводы по своему назначению делятся на два типа (рисунок 2, 3):

— для управления скоростями подачи электродной проволоки и перемещения сварочной каретки и их стабилизации;

— для управления напряжением дуги и его стабилизацией — зависимая подача.

УС — усилитель разности сигналов задания Uз и обратной связи Uос;

РН — регулятор напряжения для регулирования напряжения на якоре двигателя Uя; Д — электродвигатель подачи электродной проволоки; N — число оборотов двигателя; Р — редуктор; Vп — скорость подачи электродной проволоки

Рисунок 2 — Функциональная схема управления приводом независимой подачи электродной проволоки

ИП — источник питания; ДН — датчик напряжения на дуге

Рисунок 3 — Функциональная схема управления приводом зависимой подачи для регулирования и стабилизации напряжения на дуге

Из приведенных функциональных схем видно, что необходимый закон регулирования напряжения на якоре двигателя обеспечивается сигналом обратной связи ОС, снимаемой с входных зажимов якоря (в схеме с независимой подачей) и с дугового промежутка (в схеме с зависимой подачей). Этот сигнал сравнивается с сигналом задания в устройстве сравнения, а полученная разность через усилитель УС управляет регулятором напряжения РН на якоре двигателя Д.

Устройство сравнения в практических схемах представляет собой схему вычитания двух напряжений и часто реализуется на3 резисторах. После сравнения сигналов задания обратной связи требуется усиление разницы сигналов с большим коэффициентом усиления. На практике для этой цели применяются усилители постоянного тока. В более ранних разработках они реализовывались на транзисторах, а в последние годы используются интегральные усилители постоянного тока. Эти усилители, называемые операционными, практически не имеют недостатков, присущих усилителям на дискретных компонентах. Обладая высоким коэффициентом усиления, большим входным сопротивлением и имея два входа (прямой и инвертирующий), они объединяют в себе функции сравнения и усиления сигналов, а также функции коррекции управляющих воздействий. Последнее позволяет простыми средствами формировать требуемые законы регулирования, обеспечивая тем самым необходимые статические и динамические свойства электроприводов.

3. Автоматы с постоянной скоростью подачи электрода

3.1 Общие сведения

При достаточных скоростях плавления электродной проволоки возможна удовлетворительная работа дугового автомата при постоянной скорости подачи электродной проволоки без применения каких-либо автоматических механизмов для регулирования процесса сварки. Оригинальная идея использования подобного автомата, требующего минимального ухода и обслуживания, принадлежит Институту электросварки им. Е. О. Патона . Институт разработал целую серию автоматов для сварки под флюсом токами до 3000 А.

Конструкции автоматов отличаются простотой: трехфазный асинхронный электродвигатель с постоянным числом оборотов через коробку передач приводит во вращение ролик, подающий электродную проволоку. Скорость подачи проволоки изменяется сменой передаточных зубчатых колес. Таким же образом регулируется скорость перемещения по шву у самоходных автоматов и сварочных тракторов.

Автоматы снабжены дополнительными устройствами: для правки электродной проволоки, поворота, наклона и точной установки автомата над швом, указателями и копирами, корректирующими положение конца электрода относительно оси шва. Автоматы с постоянной скоростью подают проволоку все время по направлению к изделию, зажигание дуги производится кратковременным пуском электродвигателя автомата в обратную сторону. После зажигания дуги электродвигатель автомата переключается на подачу электродной проволоки к изделию и вследствие саморегулирования сварочной дуги быстро устанавливается нормальная работа автомата. В конце сварного шва выключается механизм перемещения дуги и автомат, подающий электродную проволоку; сварочный ток не выключается, и дуга продолжает гореть до естественного обрыва вследствие ее удлинения. Таким образом заваривается конечный кратер.

Управляют автоматом обычно через установленный в удобном месте кнопочный пульт управления.

Автоматы с постоянной скоростью подачи электрода наиболее распространены вследствие простоты устройства и надежности в работе.

3.2 Универсальный дуговой автомат АДФГ-630

Универсальный сварочный автомат АДФГ-630 предназначен для автоматической однослойной, многослойной сварки и наплавки электродной проволокой в среде защитных газов, а так же под слоем флюса изделий из малоуглеродистых и низколегированных сталей на постоянном токе.

АДФГ-630 используется при сварке стыковых, угловых и нахлесточных соединений (с разделкой и без разделки кромок), внутри и вне колеи автомата, прямым и наклонным электродом, а так же при сварке угловых соединений «в лодочку». Сварочные швы могут быть прямолинейными и кольцевыми.

Автомат в процессе сварки перемещается непосредственно по свариваемому изделию или рядом с изделием, а так же может передвигаться по уложенной направляющей профильной линейке.

Рисунок 3 — Универсальный дуговой автомат АДФГ-630

— Универсальность, так как на базе одной тележки может производить сварку в среде защитных газов, а так же под слоем флюса, при установке соответствующей комплектации на автомат (под газ или под флюс).

— Плавная регулировка скорости подачи электродной проволоки.

— Плавная регулировка скорости перемещения тележки автомата.

— Дистанционное включение и плавное регулирование сварочного напряжения источника.

— Регулировки положения сварочной головки в различных пространственных положениях.

— Наличие пульта дистанционного управления.

— Наличие тормозного устройства под кассету сварочной проволоки с внутренним диаметром 50 мм.


Статьи по теме